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Abstract. In this paper, we generalize the parametric ∆-VaR method from

portfolios with normally distributed risk factors to portfolios with elliptically

distributed ones. We treat both the expected shortfall and the Value-at-Risk
of such portfolios. Special attention is given to the particular case of a multi-
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1. Introduction

The original RiskMetrics methodology for estimating VaR was based on para-
metric methods, and used the multi-variate normal distribution. This approach
works well for the so-called linear portfolios, that is, those portfolios whose aggre-
gate return is, to a good approximation, a linear function of the returns of the
individual assets which make up the portfolio, and in situations where the lat-
ter can be assumed to be jointly normally distributed. For other portfolios, like
portfolios of derivatives depending non-linearly on the return of the underlying, or
portfolios of non-normally distributed assets, one generally turns to Monte Carlo
methods to estimate the VaR. The Monte Carlo methodology has the obvious ad-
vantage of being almost universally applicable, but has the disadvantage of being
much slower than comparable parametric methods, when the latter are available.
This is an issue in situations demanding for real-time evaluation of financial risk.
For non-linear portfolios, practitioners, as an alternative to Monte Carlo, use ∆-
normal VaR methodology, in which the portfolio return is linearly approximated,
and an assumption of normality is made. Such methods present us with a trade-off
between accuracy and speed, in the sense that they are much faster than Monte
Carlo, but are much less accurate unless the linear approximation is quite good and
the normality hypothesis holds well. In cases where the linear approximation is of
poor quality, or inherently instable (as is the case when the portfolio ∆ is close to
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0), one turns to higher order approximations, in first instance the quadratic one,
while keeping the normality assumption. This leads to the so-called Γ − ∆ VaR,
which can be evaluated using Monte Carlo, but for which also a number of semi-
parametric methods have been developed; see e.g. [5] , [6], and their bibliography.
Further references for quadratic case are Albanese, Jackson and Wiberg [1]and [2]
and [9] for Student distributed risk factors (see below).

An obvious first generalization is to keep the linearity assumption, but replace
the normal distribution by some other family of multi-variate distributions. This
is the subject of the present paper. As an alternative to the normal hypothesis
we will assume that the log returns of the portfolio’s constituents have a multi-
variate elliptic distribution in one of the elliptic classes N(µ,Σ, φ), cf. section 1
below for the precise definition. These have the advantage that, like normal dis-
tributions, their dependence structure is completely determined by their mean and
variance, once a choice is made for φ. Particular examples are the normal distri-
butions and the multi-variant Student-t distributions. The latter are an obvious
first choices since they possess heavy tails. Linear VaR for portfolios under Student
distributions has already been considered in the papers [3], [12], [13]. Glasserman,
Heidelberger and Shahabuddin [9] present a method to compute Γ−∆ VaR using
a semi-parametric method based on the Fourier transform, but their methodology
seems to be restricted to t-distributions. See also Lopez and Walter [14]. Note that
one shortcoming of the multivariate t-distribution is that all the marginal distri-
butions must have the same degrees of freedom, which implies that all risk factors
have equally heavy tails.

The paper is organized, as follows: In section 2, we analyze the VaR of a
linear portfolio with elliptically distributed risk-factors, paying special attention to
the case of a multi-variate Student distribution. Used in conjunction with a first
order Taylor approximation of a portfolio’s Profit & Loss function, this will give rise
to the notions of Delta Elliptic VaR and Delta-Student VaR, in analogy with the
familiar Delta Normal VaR. We show, for example, how to reduce the computation
of the Delta-Student VaR to finding the zeros of a special function. In section 3 we
show how to extend our procedure to mixtures of elliptic distributions. Section 4
treats the expected shortfall for general elliptic linear portfolios and for the special
case of Student ones. Finally, in section 5 we discuss some potential application
areas.

2. Linear Portfolio VaR with elliptic distributions

In this section we perform a parametric analysis that relies on the assumption
that the pricing function of the portfolio is linear in the risk factors. Note that
parametric methods provide very fast answers which are, however, only as accurate
as the underlying linearity assumption.

We will use the following notational conventions for the action of matrices on
vectors: single letters x, y, · · · will denote row vectors (x1, · · · , xn), (y1, · · · yn).
The corresponding column vectors will be denoted by xt, yt, with the t standing
more generally for taking the transpose of any matrix. Matrices A = (Aij)i,j , B,
will be multiplied in the usual way. In particular, A will act on vectors by left-
multiplication on column vectors, Ayt, and by right multiplication on row vectors,
xA; x · x = xxt = x2

1 + · · ·+ x2
n will stand for the Euclidean inner product.



VALUE-AT-RISK AND EXPECTED SHORTFALL FOR ELLIPTIC LINEAR PORTFOLIOS 3

A portfolio with time-t value Π(t) is called linear if its profit and loss ∆Π(t) =
Π(t)−Π(0) over a time window, [0 t] is a linear function of the returns X1(t), . . . , Xn(t)
of its constituents over the same time period:

∆Π(t) = δ1X1 + δ2X2 + ... + δnXn.

This will for instance be the case for ordinary portfolios of common stock, if we
use percentage returns, and will also hold to good approximation with log-returns,
provided the time window [0,t] is small. We will drop the time t from our notations,
since it will be kept fixed, and simply write Xj ,∆Π, etc. We also put

X = (X1, · · · , Xn),

so that ∆Π = δ ·X = δXt.

We now assume that the Xj are elliptically distributed with mean µ and corre-
lation matrix Σ = AAt:

(X1, . . . , Xn) ∼ N(µ, Σ, φ).

This means that the pdf of X is of the form,

fX(x) = |Σ|−1/2g((x− µ)Σ−1(x− µ)t),

where |Σ| stands for the determinant of Σ, and where g : R≥0 → 0 is such that the
Fourier transform of g(|x|2), as a generalized function on Rn, is equal to φ(|ξ|2)1.
Assuming that g is continuous, and non-zero everywhere, the Value at Risk at a
confidence level of 1− α is given by solution of the following equation:

(1) Prob {∆Π(t) < −V aRα} = α.

Here we follow the usual convention of recording portfolio losses by negative num-
bers, but stating the Value-at-Risk as a positive quantity of money.

In terms of our elliptic distribution parameters, we have to solve the following
equation:

α = |Σ|−1/2
∫
{δ·x≤−V aRα}

g((x− µ)Σ−1(x− µ)t)dx.

Changing variables to y = (x − µ)A−1 , dy =| A | dx , where Σ = At A is a
Cholesky decomposition of A, this becomes

α =
∫
{δA·y≤−δ·µ−V aRα}

g(|y|2)dy.

Let R be a rotation which sends δA to (|δA|, 0, . . . , 0). Changing variables once
more to y = zR, we obtain the equation

α =
∫
{|δA|z1≤−δ·µ−V aRα}

g(|z|2)dz.

If we write that |z|2 = z2
1 + |z′|2 with z′ ∈ Rn−1 then we have shown that :

α = Prob {δ ·X < −V aRα} =
∫
Rn−1

[
∫ −δ.µ−V aRα

|δA|

+∞
g(z2

1 + |z′|2)dz1]dz′.

1One uses φ as a parameter for the class of elliptic distributions, since it is always well-defined
as a continuous function: φ(|ξ|2) is simply the characteristic function of an X ∼ N(0, Id, φ). Note,

however, that in applications we would rather know g.
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Next, by using spherical variables z′ = rξ, with ξ ∈ Sn−2 , dz′ = rn−2dσ(ξ)dr, we
see that we have to solve for V aRα in the equation

(2) α = |Sn−2|
∫ +∞

0

rn−2
[ ∫ −δµt−V aRα

|δA|

−∞
g(z2

1 + r2)dz1

]
dr,

|Sn−2| being the surface measure of the unit-sphere in Rn−1:

|Sn−2| =
2π

n−1
2

Γ(n−1
2 )

.

We now introduce the function

G(s) =
2π

n−1
2

Γ(n−1
2 )

∫ −s

−∞

[ ∫ +∞

0

rn−2g(z2
1 + r2)dr

]
dz1

=
π

n−1
2

Γ(n−1
2 )

∫ −∞

s

∫ +∞

z2
1

(u− z2
1)

n−3
2 g(u)dudz1,(3)

where for the second line we changed variables u = r2 + z2
1 and replaced z1 with

−z1. We then have proved the following result:

Theorem 2.1. Suppose that the portfolio’s Profit & Loss function over the time
window of interest is, to good approximation, given by ∆Π = δ1X1 + . . . + δnXn,
with constant portfolio weights δj. Suppose moreover that the random vector X =
(X1, . . . , Xn) of underlying risk factors follows a continuous elliptic distribution,
with probability density given by fX(x) = |Σ|−1/2

g((x − µ)Σ−1(x − µ)t) where µ
is the vector mean and Σ is the variance-covariance matrix, and where we suppose
that g(s2) is integrable over R, continuous and nowhere 0. Then the portfolio’s
Delta-elliptic VaR V aRα at confidence 1− α is given by

V aRα = −δ · µ + qg
α,n ·

√
δΣδt,

where s = qg
α,n is the unique positive solution of the transcendental equation

α = G(s).

Remark 2.2. Note that |δA| has a clear financial interpretation, since

(4) |δA| =
√

δΣδt,

which is simply the portfolio’s volatility, or the square of its variance.

Remark 2.3. In short-term Risk Management, one can usually assume that µ ' 0.
In that case, we have

V aRα =
√

δΣδt · qg
α,n

which is completely analogous to the result for linear portfolios with normally dis-
tributed risk factors, except that, for example for α = 0.05, the normal quantile
at 5%, which is approximately 1.65, is now replaced by the g-dependent constant
qg
0.05. The latter will have to be computed numerically, for the different g’s one

would like to use.

Remark 2.4. One can in fact do the integral over z1 in (3): by Fubini,

(5) G(s) =
∫ ∞

s

K(s, u)g(u)du,
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where the kernel K is given by:

K(s, u) =
1
2
|Sn−2|

∫ √
u

√
s

(u− z1)
n−3

2 dz1

=
1
4
|Sn−2|

∫ u

s

(u− y)
n−3

2 y−
1
2 dy

=
1
4
|Sn−2|

∫ u−s

0

x
n−3

2 (u− x)−
1
2 dx.

At this stage we can use the following integral from Gradshteyn and Ryzhik [8]:∫ u

0

xµ−1

(1 + βx)ν
dx =

uµ

µ
2F1(ν, µ;µ + 1;−βu),

provided Re µ > 0 and |arg (1 + βu)| < π; cf. [8], formula 3.194(1). It follows that

(6) K(s, u) =
π

n−1
2

Γ(n+1
2 )

(u− s)
n−1

2 2F1

(
1
2
,
n− 1

2
;
n + 1

2
;u(u− s)

)
.

However, we shall see in the example of the multivariate t-distribution, which we
will treat next, that it can be easier to work directly with the double integral version
(3) instead of with (5) or (6).

2.1. The case of t-Student Distributions. Let us now consider, in detail, the
case where our elliptic distribution is a multivariate Student-t. We will, unsurpris-
ingly, call the corresponding V aR the Delta-Student VaR, generalizing the familiar
terminology of Delta Normal VaR.

In the case of multivariate t-student distributions, the portfolio probability den-
sity function is given by:

fX(x) =
Γ(ν+n

2 )

Γ(ν/2).
√
|Σ|(νπ)n

(
1 +

(x− µ)tΣ−1(x− µ)
ν

)(−ν−n
2 )

,

x ∈ Rn and ν > 2. Hence g is given by

g(s) = C(ν, n)(1 + s/ν)−
(n+ν)

2 , s ≥ 0,

where we have put

C(ν, n) =
Γ(ν+n

2 )

Γ(ν/2)
√

(νπ)n
.

Using this g in (3), we find that

(7) G(s) =
ν

n+ν
2

2
|Sn−2|C(ν, n)

∫ ∞

s

I(z1)dz1,

where we have put

(8) I(z1) =
∫ +∞

z2
1

(u− z2
1)

n−3
2 (ν + u)−

(n+ν)
2 du.

The function I(z1) can be evaluated with the help of another integral from [8]:
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Lemma 2.5. (Cf. [8], page 314.) If |arg(u
β )| < π and Re(ν1) > Re(µ) > 0, then

(9)
∫ +∞

w

(x− w)µ−1(β + x)−ν1dx = (w + β)µ−ν1B(ν1 − µ, µ),

with B(α, β) the Euler Beta function:

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

.

Using formula (9) with ν1 = (n+ν)
2 , µ = n−1

2 ,β = ν, and w = z2
1 , and therefore,

µ− ν1 = − 1+ν
2 and −µ + ν1 = 1+ν

2 , we find that

(10) I(z1) = (z2
1 + ν)

− 1+ν
2 B(

1 + ν

2
,
n− 1

2
).

We have not finished yet, since we still have to integrate over z1 in (7). We
therefore have to evaluate

(11) J(s, ν) =
∫ −s

−∞
(z2

1 + ν)
− 1+ν

2 dz1.

Changing the variable in this integral according to u = z2
1 , we find that

(12) J(s, ν) =
1
2

∫ ∞

s2
u−

1
2 (u + ν)−

1+ν
2 du.

For the latter integral, we will use another formula from [8]:

Lemma 2.6. (cf. [8], formula 3.194(2)). If |arg(u
β )| < π, and Re(ν1) > Re(µ) >

0, then

(13)
∫ +∞

u

xµ−1(1 + βx)−ν1dx =
uµ−ν1β−ν1

ν1 − µ
2F 1(ν1, ν1 − µ; ν1 − µ + 1;− 1

β · u
).

Here 2F1(α;β, γ;w) is the hypergeometric function.

In our case, ν1 = 1+ν
2 , µ = 1

2 , ν1 − µ = ν
2 ,β = ν−1, and u = s2 so, if we replace

in (12), we will obtain the following expression:

(14) J(s, ν) =
2
ν

s−ν
2F 1

(1 + ν

2
,
ν

2
; 1 +

ν

2
;− ν

s2

)
.

Recalling (7), we find, after a small computation, that in the Student-t case,

G(s) = Gt
ν(s) =

1
ν

ν
n+ν

2 |Sn−2|C(ν, n)s−ν
2F 1

(1 + ν

2
,
ν

2
; 1 +

ν

2
;− ν

s2

)
=

1
ν
√

π

( ν

s2

)ν/2 Γ
(

ν+1
2

)
Γ
(

ν
2

) 2F 1

(1 + ν

2
,
ν

2
; 1 +

ν

2
;− ν

s2

)
.(15)

Hence we have proven the following result on Delta-Student VaR:

Theorem 2.7. Assuming that ∆Π ' δ1X1 + δ2X2 + ... + δnXn with a multivari-
ate Student-t random vector (X1, X2, .., Xn) with vector mean µ , and variance-
covariance matrix Σ, the linear Value-at-Risk at confidence 1 − α is given by the
following formula:

V aRα = −δ · µ + qt
α,ν ·

√
δΣδt,
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where now s = qt
α,ν is the unique positive solution of the transcendental equation

Gt
ν(s) = α,

with Gt
ν defined by (15).

Remark 2.8. Note that qt
α,ν does not depend on n.

Hypergeometric 2F1’s have been extensively studied, and numerical software for
their evaluation is available in Maple and in Mathematica.

2.2. Some Numerical Results of Delta Student VaR coefficient qα,ν . In the
following table, we estimate only the positive solution of G(s) = α for some ν. This
is given, with the help of Mathematica 4 Software.

Table 1 : Some values of qt
α,ν .

ν 2 3 4 5 6 7 8 9
qt
0.00,ν 613.229 126.18 43.9747 27.6506 20.3354 14.2738 12.3398 11.039

qt
0.01,ν 6.96456 4.54056 3.74695 3.36493 3.14267 2.99795 2.89646 2.8214

qt
0.025,ν 4.3026 3.18244 2.77644 2.57058 2.44691 2.36462 2.3060 2.26216
qt
0.05,ν 2.91999 2.35336 2.13185 2.01505 1.94318 1.89458 1.85955 1.81246

Table 2 : Some values of qt
α,ν .

ν 10 100 200 250 275 300 400 1000
qt
0.00,ν 11.039 5.0722 4.9286 4.90064 4.89053 4.88214 4.85916 4.81824

qt
0.01,ν 2.76377 2.36422 2.34135 2.34514 2.33998 2.33884 2.33571 2.33008

qt
0.025,ν 2.22814 1.98397 1.97189 1.96949 1.96862 1.9679 1.96591 1.96234
qt
0.05,ν 1.66023 1.66023 1.65251 1.65097 1.65041 1.64995 1.64867 1.64638

Remark 2.9. The Delta-Student VaR works well for 100 percent confidence level
(α = 0).

Remark 2.10. Note that, we obtain practically the same result as in the case of
normal distribution, when the degree of freedom of our t-student is sufficiently high
(ν near 300), as it of course should.

3. Linear VaR with mixtures of elliptic Distributions

Mixture distributions can be used to model situations where the data can be
viewed as arising from two or more distinct classes of populations; see also [10].
For example, in the context of Risk Management, if we divide trading days into
two sets, quiet days and hectic days, a mixture model will be based on the fact
that returns are moderate on quiet days, but can be unusually large or small on
hectic days. Practical applications of mixture models to compute VaR can be
found in Zangari (1996), who uses a mixture normal to incorporate fat tails in
VaR estimation. Here we sketch how to generalize the preceding section to the
situation where the joint log-returns follow a mixture of elliptic distributions, that
is, a convex linear combination of elliptic distributions.

Definition 3.1. We say that (X1, ..., Xn) has a joint distribution that is the mix-
ture of m elliptic distributions N(µj ,Σj , φj)2, with weights {βj} (j=1,..,m ; βj > 0

2or N(µj , Σj , gj) if we parameterize elliptical distributions using g instead of φ
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;
∑m

j=1 βj = 1), if its cumulative distribution function can be written as

FX1,...,Xn
(x1, ..., xn) =

m∑
j=1

βjFj(x1, ..., xn)

with Fj(x1, ..., xn) the cdf of N(µj ,Σj , φj).

Remark 3.2. In practice, one would usually limit oneself to m = 2, due to esti-
mation and identification problems; see [10].

We will suppose that all our elliptic distributions N(µj ,Σj , φj) admit a pdf :

(16) fj(x) = |Σj |−1/2gj((x− µj)Σj
−1(x− µj)t).

The pdf of the mixture will then simply be
∑m

j=1 βjfj(x).

Let
Σj = At

j Aj

be a Cholesky decomposition of Σj . Since integration is a linear operation, we now
have to solve

(17) α = |Sn−2|
m∑

j=1

βj |Σj |−1/2
∫ +∞

0

rn−2
[ ∫ −δ·µj−V aRα

|δAj |

−∞
gj(z2

1 + r2)dz1

]
dr

to obtain V aRα. This leads to the following theorem:

Theorem 3.3. Let ∆Π = δ1X1 + . . . + δnXn with (X1, . . . , Xn) is a mixture of
elliptic distributions, with the density function

f(x) =
m∑

j=1

βj |Σj |−1/2
gj((x− µj)Σ−1

j (x− µj)t)

where µj is the vector mean, and Σj the variance-covariance matrix of the j-th
component of the mixture. We suppose that each gj is an integrable function over
R, and that the gj never vanish jointly in a point of Rm. Then the Value-at-Risk,
or Delta mixture-elliptic VaR, at confidence 1 − α, is given as the solution of the
transcendental equation

(18) α =
m∑

j=1

βjGj

(
δµt

j + V aRα

(δΣjδ)1/2

)
,

where Gj is defined by (3) with g = gj . Here, δ = (δ1, . . . , δn).

Remark 3.4. In the case of a mixture of m elliptic distributions, the VaR will
not depend any more on a simple way of the total portfolio mean and variance-
covariance. This is unfortunate, but is already the case for a mixture of normal
distributions.

Remark 3.5. One might, in certain situations, try to model with a mixture of
elliptic distributions that all have the same variance-covariance and the same mean,
and obtain for example a mixture of different tail behaviors by playing with the
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gj ’s. In that case the VaR again simplifies to V aRα = −δ · µ + qα ·
√

δΣδt, with qα

now the acting as the unique positive solution to

α =
m∑

j=1

βjGj(qα).

The preceding can immediately be specialized to a mixture of Student t-distributions.
The details will be left to the reader.

4. Expected Shortfall for elliptic distributions

Expected shortfall is a sub-additive risk statistic that describes how large losses
are on average when they exceed the VaR level. Expected shortfall will therefore
give an indication of the size of extreme losses when the VaR threshold is breached.
We will evaluate the expected shortfall for a linear portfolio under the hypothe-
sis of elliptically distributed risk factors. Mathematically, the expected shortfall
associated with a given VaR is defined as:

Expected Shortfall = E(−∆Π | −∆Π > V aR),

see for example [10]. Assuming again a multivariate elliptic probability density
f(x) = |Σ|−1/2

g((x − µ)Σ−1(x − µ)t), the Expected Shortfall at confidence level
1− α is given by

−ESα = E(∆Π | ∆Π ≤ −V aRα)

=
1
α

E
(
∆Π · 1{∆Π≤−V aRα}

)
=

1
α

∫
{δxt≤−V aRα}

δxt f(x) dx

=
|Σ|−1/2

α

∫
{δxt≤−V aRα}

δxt g((x− µ)Σ−1(x− µ)t)dx.

Let Σ = At A, as before. Doing the same linear changes of variables as in section
2, we arrive at:

−ESα =
1
α

∫
{|δA|z1≤−δ·µ−V aRα}

(|δA|z1 + δ · µ) g(‖z‖2)dz

=
1
α

∫
{|δA|z1≤−δ·µ−V aRα}

|δA|z1 g(‖z‖2) dz + δ · µ.

The final integral on the right hand side can be treated as before, by writing ‖z‖2 =
z2
1 + ‖z′‖

2
and introducing spherical coordinates z

′
= rξ, ξ ∈ Sn−2, leading to:

−ESα = δ · µ +
|Sn−2|

α

∫ ∞

0

rn−2
[ ∫ −δµt−V aRα

|δA|

−∞
|δA| z1 g(z2

1 + r2)dz1

]
dr.

We now first change z1 into −z1, and then introduce u = z2
1 + r2 as before. If we

recall that, by theorem 2.1,

qg
α,n =

δ · µ + V aRα

|δA|
,
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then, simply writing qα for qg
α,n, we arrive at:

ESα = −δ · µ + |δA| |Sn−2|
α

·
∫

qα

∫ ∞

z2
1

z1(u− z2
1)

n−3
2 g(u) du dz1

= −δ · µ + |δA| |Sn−2|
α

·
∫ ∞

q2
α

1
n− 1

(
u− q2

α

)n−1
2 g(u) du,

since ∫ √
u

qα

z1

(
u− z2

1

)n−3
2 =

1
n− 1

(
u− q2

α

)n−1
2 .

After substituting the formula for |Sn−2| and using the functional equation for the
Γ-function, Γ(x + 1) = xΓ(x), we arrive at the following result:

Theorem 4.1. Suppose that the portfolio is linear in the risk-factors X = (X1, · · · , Xn):
∆Π = δ ·X and that X ∼ N(µ, Σ, φ), with pdf f(x) = |Σ|−1/2

g((x−µ)Σ−1(x−µ)t).
If we write qg

α,n = δ·µ+V aRα

(δΣδ)1/2 , then the expected Shortfall at level α is given as:

(19) ESα = −δ · µ + Kg
ES · |δΣδt|1/2.

where the constant

(20) Kg
ES =

π
n−1

2

α · Γ(n+1
2 )

·
∫ ∞

(qg
α,n)2

(
u− (qg

α,n)2
)n−1

2 g(u) du

4.1. Application: Student Expected Shortfall. In the case of multi-variate
t-Student distributions we have that g(u) = C(ν, n)(1 + u/ν)−

(n+ν)
2 , with C(ν, n)

given in section 2. Let us momentarily write q for qt
α,ν . We can evaluate the integral

in (19), using lemma 2.5, as follows:∫ ∞

q2
(u− q)

n−1
2

(
1 +

u

ν

)−n+ν
2

du

= ν
n+ν

2 (q2 + ν)−( ν−1
2 )B

(
ν − 1

2
,
n + 1

2

)
.

If we pose that :

esα,ν =
1

α ·
√

π

Γ
(

ν−1
2

)
Γ
(

ν
2

) νν/2
(
(qt

α,ν)2 + ν
)−( ν+1

2 )
,

after substitution in (19), we find, after some computations, the following result:

Theorem 4.2. The Expected Shortfall at confidence level 1−α for a multi-variate
Student-distributed linear portfolio δ ·X, with

X ∼
Γ(ν+n

2 )

Γ(ν/2).
√
|Σ|(νπ)n

(
1 +

(x− µ)tΣ−1(x− µ)
ν

)−( ν+n
2 )

,
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is given by:

ESt
α,ν = −δ · µ + |δΣδt|1/2 · 1

α ·
√

π

Γ
(

ν−1
2

)
Γ
(

ν
2

) νν/2
(
(qt

α,ν)2 + ν
)−( ν+1

2 )

= −δ · µ + |δΣδt|1/2 · 1
α ·

√
π

Γ
(

ν−1
2

)
Γ
(

ν
2

) νν/2

((
δ · µ + V aRα

|δΣδ|1/2

)2

+ ν

)−( ν+1
2 )

= −δ · µ + esα,ν · |δΣδt|1/2.

The Expected Shortfall for a linear Student portfolio is therefore given by a com-
pletely explicit formula, once the VaR is known. Observe that, as for the VaR, the
only dependence on the portfolio dimension is through the portfolio mean δ ·µ and
the portfolio variance δΣδt.

Using Matlab, we obtain the following table of values of eα,ν , for some value of
ν given.

Table 3 : Some values of et
α,ν .

ν 2 3 4 5 6 7 8 9
est

0.01,ν 5.5722 5.9309 5.7879 5.4555 5.0799 4.7160 4.3819 4.0818
est

0.025,ν 8.6113 7.6777 6.8216 6.0676 5.4326 4.9032 4.4601 4.0862
est

0.05,ν 11.7123 9.0750 7.4966 6.3797 5.5457 4.9007 4.3880 3.9711

Table 4 : Some values of et
α,ν .

ν 10 100 200 250
est

0.01,ν 3.8135 0.5157 0.2644 0.2086
est

0.025,ν 3.7675 0.4577 0.2313 0.1854
est

0.05,ν 3.6257 0.4073 0.2050 0.1642

4.2. ES for Elliptic distribution Mixtures. The preceding results can, as be-
fore, easily be generalized to mixtures of elliptic distributions. Details are left to
the reader.

5. Some Areas of Applications

In this section, we survey some areas for applications of linear portfolios that
exist in financial literature. We will discuss five examples:

• Delta approximation of a derivatives portfolio
• Linear approximation of an equity portfolio
• Businesses as portfolios of business units
• Incremental VaR
• Problem of the aggregation of risks

5.1. Delta Approximation of a Portfolio. Suppose that we are holding a port-
folio of derivatives depending on n underlying assets X(1), X(2), ..., X(n), with el-
liptically distributed log-returns r(j), over some fixed time-window. The portfolio’s
present value V will in general be some complicated non-linear function of the
X(i)’s. To obtain a first approximation of its VaR, we simply approximate the
present Value V of the position using a first order Taylor expansion:

V (X + ∆X) ≈ V (X) +
n∑

i=1

∂V

∂X(i)
∆Xi.
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From this, we can then approximate the Profit & Loss function as

∆V = V (X + ∆X)− V (X) ≈
n∑

i=1

δir
(i) = δ · r,

where we put r = (r(1), ..., r(n)) and δ = (δ1, ..., δn) with δi = X(i) ∂V
∂X(i) . The entries

of the δ vector are called the ”delta equivalents ” for the position, and they can
be interpreted as the sensitivities of the position with respect to changes in each
of the risk factors. For more details see [10], where a multi-variate normal distri-
bution for the ri’s is assumed. The discussion there generalizes there generalizes
straightforwardly to the elliptic case, where the present paper’s results can be used.

5.2. Portfolios of Equities. A special case of the preceding is that of an equity
portfolio, build of stock S1, . . . , Sn with joint log-returns r = (r1(t), . . . , rn(t)). In
this case, the portfolio’s Profit & Loss function over the time window [0,t] of interest
is, to good approximation, given by

Π(t)−Π(0) =
n∑

i=1

wiSi(0)(Si(t)/Si(0)− 1)

≈
n∑

i=1

wiSi(0)ri(t) = δrt = δ · r,

where this approximation will be good if the ri(t) are small. In this case the
preceded theorems are applicable where δ = (w1S1(0), . . . , wnSn(0)) and rj(t) =
log(Xj(t)/Xj(0)) for j=1,. . . ,n.

5.3. Businesses as Linear Portfolios of Business Units. An interesting way
of looking upon an big enterprize, e.g. a multi-national or a big financial institution,
is by considering it as a sum of its individual business units, cf. Dowd [11]. If Xj ,
is the variation of price or of profitability of business unit j in one period, then the
variation of price of the agglomerate in the same period will be

∆Π = X1 + . . . + Xn.

The entire institution is therefore modelled by a linear portfolio, with δ = (1, 1, . . . , 1),
to which the results of this paper can be applied, if we model the vector of indi-
vidual price variations by a multi-variate elliptic distribution. VaR, incremental
VaR (see below) and Expected Shortfall will be relevant here. For more details see
Dowd [11], chapter XI .

5.4. Incremental VaR. Incremental VaR is defined in [10] as the statistic that
provides information regarding the sensitivity of VaR to changes in the portfolio
holdings. It therefore gives an estimation of the change in VaR resulting from a
risk management decision. Results from [10] for incremental VaR with normally
distributed risk-factors generalize straightforwardly to elliptically distributed ones:
if we denote by IV aRi the incremental VaR for each position in the portfolio, with
θi the percentage change in size of each position, then the change in VaR will be
given by

∆V aR =
∑

θiIV aRi



VALUE-AT-RISK AND EXPECTED SHORTFALL FOR ELLIPTIC LINEAR PORTFOLIOS 13

By using the definition of IV aRi as in [10] (2001), we have that

(21) IV aRi = ωi
∂V aR

∂ωi

with ωi is the amount of money invested in instrument i. In the case of an equity
portfolio in the elliptically distributed assets, we have seen that, assuming µ = 0,

V aRα = −qg
α,n

√
δΣδt.

We can then calculate IV aRi for the i-th constituent of portfolio as

IV aRi = ωi
∂V aR

∂ωi
= ωiγi

with

γ = −qg
α,n

Σω√
δΣδt

.

The vector γ can be interpreted as a gradient of sensitivities of VaR with respect
to the risk factors. This is the same as in [10], except of course that the quantile
has changed from the normal one to the one associated to g.

5.5. Problem of the aggregation of risks. Suppose that we have a constituted
portfolio with several sub-portfolios of assets from different markets. Given the
Value-at-Risk of the portfolios constituting the global portfolio, under the hypoth-
esis that the joined risks factors follow an elliptic distribution , the question is how
to get the VaR of the global portfolio.

In order to be clearer and simpler, let us consider a global constituted portfolio
of 2 sub-portfolios from different markets with respective weights δ1 and δ2. Σ1

represents the matrix of interrelationship in the sub-portfolio of market 1; Σ2 rep-
resents the matrix of interrelationship in the sub-portfolio of market 2. One will be
able to write the matrix of interrelationship of a global portfolio like this:

Σ =
(

Σ1 Σ12

Σ12
t Σ2

)
,

where Σ12 is the correlation matrix that takes into consideration the interaction
between the market M1 and the market M2 . If δt = (δ1, δ2), we have

(22) δtΣδ = δ1
tΣ1δ1 + δ2

tΣ2δ2 + 2 · δ1tΣ12δ2.

Therefore, since we know that when µ ≈ 0, we have

V aRα = qg
α,n ·

√
δΣδt,

the Value-at-Risk of the global portfolio will be given by

(23) V aRα(M) =
√

VaRα(M1)2 + VaRα(M2)2 + 2[qg
α,n]2 · δ1tΣ12δ2.

An implicit interrelationship with the hypothesis of elliptic distribution is ob-
tained in an analogous way, like in the case where one works with the hypothesis
of the normal distribution. Note that, one will distinguish several situations from
the behavior of Σ12. With some simple operations, the implicit interrelationship is

(24) φ =
δ1

tΣ12δ2√
(δ1tΣ1δ1)(δ2tΣ2δ2)
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with the Value-at-Risk V aRα(M) of the global portfolio being given as follows:
(25)

V aRα(M) =
√

[VaRα(M1)]2 + [VaRα(M2)]2 + 2φ ·VaRα(M1)VaRα(M2)).

6. conclusion

In this paper we have shown how to reduce the estimation of Value-at-Risk for
linear elliptic portfolios to the evaluation of one dimensional integral which, for
the special case of a Student distribution, can be explicitly evaluated in terms
of a hypergeometric function. We indicated how to extend these to the case of
mixtures of elliptic distributions. We have also given a similar, but simpler, integral
formula for the expected shortfall of such portfolios which, again, can be completely
evaluated in the Student case. Finally, we surveyed some potential application
areas.
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